
Webex WFO Data Import/Export Reference Guide

For Deployments with Classic WFM

First Published: July 10, 2020
Last Updated: October 04, 2024

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT

TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS

MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY

PRODUCTS. THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT

ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE

INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE

LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of

California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved.

Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF

THESE SUPPLIERS ARE PROVIDED “AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED

SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION,

THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR

ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL,

CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR

LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF

CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses

and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in

the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative

content is unintentional and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version

for the latest version.

Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at

www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other

countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks

mentioned are the property of their respective owners. The use of the word partner does not imply a partnership

relationship between Cisco and any other company. (1721R)

© 2020, 2021, 2022, 2023, 2024 Cisco Systems, Inc. All rights reserved.

data-set-contributions.htm
data-set-contributions.htm

Contents

Contents 3

Introduction 5

GIS API 7

Capture historical data 7

Requirements 7

File Usage 8

Text File Locations 8

ACD Numbering 9

Text File Details 9

Data Type Definitions 9

AgentProductivity.AGENT File 11

ServiceHistorical.SERVICE File 22

AgentState.EVENT File 28

Integrate your HRMS with Webex WFO 32

Import file details 33

Export file details 34

Real-time data capture API 37

API Definition 37

Import contacts in bulk 41

Protocol and URI 42

Supported formats 42

Request and response fields 43

CSV file examples 48

JSON file examples 49

ZIP format 50

Using the Data Server for bulk contact import 51

Import post-call survey IVR data 52

Form CSV file 52

Results CSV file 54

Example 55

Import generic CDR data 56

Upload via the Gathering Server 56

Import and sync file-based data 59

Users file 59

Teams file 61

Service queues file 61

WFM Historical Import Tool (WHIT) 63

Software Requirements 63

WHIT Components 63

WFM Historical Import Template 63

WHIT JAR and BAT Files 63

Importing Data with WHIT 64

Installing WHIT 64

Preparing the WHIT Spreadsheet 64

Running WHIT 65

Introduction
You can import and integrate historical and real-time data from any automatic contact distributor (ACD) to
the Webex WFO database using one of the following tools.

n GIS API. The GIS API is used to import both historical and real-time service queue and agent
productivity data to the Webex WFO database at specified intervals. Webex WFO uses this agent data
to generate distributions, forecasts, reports, and statistics.

n Workforce Management Historical Import Tool (WHIT). WHIT is used to convert existing

historical data from a non-Webex WFO system into data files that can be loaded into Webex WFO
service queues. You might want to use WHIT if you are installing a new Webex WFO system.

5

GIS API
The GIS API is part of Webex WFO and requires no separate installation or executable to function.

NOTE File paths shown in this document are the default file path. Webex WFO can be installed to a
custom location, so your file path might differ.

Capture historical data
The following tasks are required to import historical data from an ACD to the Webex WFO database:

1. Write scripts that retrieve the historical data from the ACD.

2. Create a batch process to run the scripts at specified intervals to retrieve the historical data and
convert it to the required comma-delimited text file format.

3. Place the comma-delimited text files in a predefined folder on the Webex WFO Data Server using
FTP or some other tool.

The GIS API processes the comma-delimited text files and writes the historical data to the Webex
WFO database.

Requirements
The following are conditions that must be met in order to assure successful call and non-call data capture.

n Ensure that the format used in the ACD agent IDs that are synced from the ACD to Webex WFO is
used whenever sending historical and real-time data to Webex WFO. If there is a case mismatch (for

example, the agent ID in the ACD is JSMITH but in the data import file it is Jsmith), the data
import will fail.

n Service historical data is calculated from the summation of agent service productivity data. As a
result, both the AgentProductivity.AGENT and ServiceHistorical.SERVICE files must be available
for a given period for capture to take place. If both files are found, but data is missing from one,
certain values might be taken to be zero (the sum of zero items equals zero). It is also important that
the agent productivity and service historical data are consistent in terms of which agents and services
have data.

7

GIS API | Capture historical data

n Only one file of each type should be written per historical period per ACD. A second file of the same
type for the same period will cause data from the first file to be overwritten.

n The same ACD number should be used in the file name and file headers for all files for that ACD.

File Usage
Use the three capture files as follows.

File Use

.SERVICE This file is required and used for service queue statistics.

.AGENT This file is used to report agent productivity data for each service queue
the agents works with. The file is required in order to process the files for
the given intervals. It is not necessary for the file to contain any data
rows, only the header row. However, if you want to track individual agent
productivity, then it should include data rows.

.EVENT This file is optional. It can be used as one method to display the agent
real-time state and capture real-time events to calculate agent
conformance and adherence.

The GIS API processes this file as soon as it drops into the Reports
folder. The frequency of new files dropping into the Reports folder
determines how close to real time the data is.

NOTE The preferred method of capturing real-time events is

through the use of the Real-Time Data Capture API. See Real-

time data capture API for more information.

Text File Locations
The comma-delimited text files must be placed in the location configured on the Data Server Configuration
page. If a location is not configured on the Data Server Configuration page, then the text files must be placed
in the following default location on the Data Server:

C:\Program Files\Common Files\Webex WFO\Data

Server\gis\reports\<tenant>

After the text files are processed they are archived in the Cloud and the Data Server for troubleshooting
purposes.

8

GIS API | Capture historical data

ACD Numbering
ACDs from which data is imported are assigned numbers to identify them as the data source. The ACD
numbers are assigned by Webex WFO on the ACD Configuration page (see the section, “Connection
Settings for Generic ACDs”).

Even if there is only one ACD, that ACD must be assigned a number. In the examples in this document, the
ACD is assigned the number 1.

Additionally, the agent identifiers (ACD ID in Webex WFO) and service queue identifiers (Service Queue
ID in Webex WFO) in GIS text files must be unique

Text File Details
This section provides the details of the three comma-delimited text files used by the GIS API. These files are
the following:

n AgentProductivity.AGENT

n ServiceHistorical.SERVICE

n AgentState.EVENT

The data in the files is by 30-minute intervals. This interval is not configurable.

NOTE The date format in the text files (YYYY-MM-DD) might be changed by a spreadsheet
application such as Microsoft Excel to the format that is set in the application as the default. Be
aware of this possibility and make sure that the date columns are configured so that the date format is
correct.

Data Type Definitions
The data types noted in this section have specific definitions. These definitions are detailed in the following
table.

Data Type Definition

date A date expressed in YYYY-MM-DD format.

double A floating point value expressed in a manner that can be parsed as a
signed double-precision floating point value. Any value allowed as a long
is also allowed as a double. The + sign should be omitted.

integer An integer expressed as a signed decimal integer value, without leading
zeros, whose value is at least –0x8000 and at most 0x7fff. The + sign

9

GIS API | Capture historical data

Data Type Definition

should be omitted.

long An integer expressed as a signed decimal integer value, without leading
zeros, whose value is at least –0x80000000 and at most 0x7fffffff. The +
sign should be omitted.

nonnegative double A floating point value expressed in a manner that can be parsed as a
signed double-precision floating point value, whose value is at least
0x00000000. Any value allowed as a non-negative long is also allowed as
a non-negative double. The + sign should be omitted.

nonnegative long An integer expressed as a signed decimal integer value, without leading
zeros, whose value is at least 0x00000000 and at most 0x7fffffff. The +
sign should be omitted.

null The literal value NULL (case insensitive).

positive double A floating point value expressed in a manner that can be parsed as a
positive signed double-precision floating point value. Any value allowed
as a positive long is also allowed as a positive double. The + sign should
be omitted.

positive long An integer expressed as a signed decimal integer value without leading
zeros, whose value is at least 0x00000001 and at most 0x7fffffff. The +
sign should be omitted.

time A time expressed in any of the following formats:

n hh:mm

n hh:mm:ss

n hh:mm:ss.sss

timestamp A time stamp consisting of the following data types:

<date> <time> <tzoffset>

tzoffset A time zone offset expressed in +HHMM, -HHMM, HHMM format or
the literal values GMT or UTC.

10

GIS API | Capture historical data

AgentProductivity.AGENT File
The AgentProductivity.AGENT file contains agent productivity data by 30-minute intervals from 00:00 to
23:59.

File Name Format

<date/time><tzoffset>_<ACD#>_AgentProductivity.AGENT

Element Description

<date/time> The date and time the file was generated, in YYYYMMDDHHMM
format.

Example: 201301151430 (14:30 on January 15, 2013). Time is in 24-hour
format.

<tzoffset> The time zone (where the ACD is located) date/time offset from GMT in
AHHMM format, where:

n A is either P (positive) or N (negative), characterizing the offset
from GMT

n HH is the number of offset hours

n MM is the number of offset minutes

EXAMPLE If the ACD is in Greenwich Mean Time (GMT), then
the <tzoffset> is P0000. If the ACD is in Eastern Standard Time
(EST) (GMT–0500), then the <tzoffset> is N0500.

<ACD#> The ACD number (see ACD Numbering).

File Header

AGENT DATE: <date> INTERVAL: <time> TZOFFSET: <tzoffset> ACD: <ACD#>

Element Description

<date> The date the file was generated, in YYYY-MM-DD format.

<time> The beginning of the 30-minute interval covered by the data, in HH:MM
24-hour format.

<tzoffset> The time zone (where the ACD is located) offset from GMT, in +HHMM,

11

GIS API | Capture historical data

Element Description

-HHMM, or HHMM format. If plus or minus is not specified, the offset is
assumed to be plus (positive).

<ACD#> The number of the ACD that is the source of the data.

The file header must be the first non-blank line in the file.

NOTE

The AGENT DATE, INTERVAL, and TZOFFSET values must represent a period start time that
matches those in the file name as well as a historical period supported by Webex WFO. It is not
required that the individual values match, but only to mean the same point in time. For example, if
the file is named:

201301231800N0500_1_AgentProductivity.AGENT

and the header is:

AGENT DATE: 2013-01-23 INTERVAL: 23:00 TZOFFSET: 0000 ACD: 1

there is no error, because each is expressing the same point in time in different time zones. The
time 18:00 in the time zone N0500 (a 5-hour negative offset from GMT) is the same as the time
23:00 in the GMT time zone.

Column Header

<columnname1>,<columnname2>,<columnname3>. . .,<columnnameN>

Where <columnname1> through <columnnameN> are the names of columns represented in the file.

Column names are not restricted to required and optional columns. You can add additional unrecognized
columns and associated data (for example, agent names or service names) to make the GIS files more
human-readable. The GIS API ignores these columns and their associated data.

Column order is not specified. The only requirement for column order is that the column names are in the
same order as the data in each line.

Column names cannot contain commas, are case sensitive, and cannot start or end with a space (such spaces
are automatically trimmed when the file is parsed). Column names must be unique. Duplicate column names
(after space trimming) result in an error.

The column header must be the second non-blank line in the file.

12

GIS API | Capture historical data

Data Lines

<columnvalue1>,<columnvalue2>,<columnvalue3>. . .,<columnvalueN>

Where<columnvalue1> through <columnvalueN> are the values of <columnname1> through
<columnnameN> for one row of data.

Each line of data corresponds to one data item within the file, with one value for each column, in the same
order as the column header. The values are separated by commas. No value can contain a comma. Data
values are trimmed of leading and trailing white space when parsed.

The third and subsequent non-blank lines in the file must be data lines. It is possible for a file to contain no
data lines. This means there were no data items for that period.

Required Columns

The following table describes the columns that are required to be in the AgentProductivity.AGENT file.

NOTE

If the AgentProductivity.AGENT file describes a non-interactive service queue, some column
names will not make sense. See the Description column for clarification.

For non-interactive service queues, if columns do not apply, then set the values in these columns to
0 (zero).

Column Data Type Description

acdAgentId string The ID of the agent in the ACD.

acdServiceId string The ID of the service queue in the ACD.
Can be alphanumeric.

contactsHandled non-negative
double

The number of contacts for the service
queue handled by the agent during the
period.

For chats, this includes chats that have been
dropped and chats that have been resolved.

totalTalkSeconds non-negative
double

The total talk time on contacts for the
service queue handled by the agent during
the period. A contact’s talk time can start in
the previous period; the entire talk time is
counted.

13

GIS API | Capture historical data

Column Data Type Description

totalHoldSeconds non-negative
double

The total hold time on contacts for the
service queue handled by the agent during
the period. A contact’s hold time can start
in the previous period; the entire hold time
is counted.

This column is not applicable to chats.
Enter zero for this column.

totalAfterContactWork
Seconds

non-negative
double

The total after-contact work time on
contacts for the service queue handled by
the agent during the period. A contact’s
after-contact time can start in the previous
period; the entire after-contact time is
counted.

totalPeriodHandleTime
Seconds

non-negative
double

The total time the agent spent handling
contacts (talk, hold, work) for the service
queue that occurred within the boundaries
of the period.

This metric (A) is differentiated from the
sum of totalTalkSeconds +
totalHoldSeconds +
totalAfterContactWorkSeconds (B) in that it
does not include time that exceeds the
period boundary.

EXAMPLE If a call is answered
by the agent at 09:29 and the call
ends at 9:33 with no after-contact
work, and if the ACD considers the
call to be handled during the 09:30–
10:00 period, then the call
contributes 4 minutes to B (09:29–
09:33) but only 3 minutes to A

14

GIS API | Capture historical data

Column Data Type Description

(09:30–09:33).

totalUnproratedReadyWaitingSeconds non-negative
double

The total Ready/Waiting time for the agent
during the period, across all service queues
in this ACD.

A non-interactive service queue, like chat,
can be Ready while the agent is answering
chats as long as the agent is not handling
the maximum number of chats.

totalUnproratedNotReady
BusySeconds

non-negative
double

The total Not Ready/Busy time for the
agent during the period, across all service
queues (not counting time while the agent is
handling a contact or reported as
Ready/Waiting on another service queue) in
this ACD.

totalUnproratedInSession
Seconds

non-negative
double

The total in session time (logged in time)
for the agent during the period, across all
service queues in this ACD.

Optional Columns

The following table describes the columns that are optional in the AgentProductivity.AGENT file. If not
included, the default value is used for the metric.

Column Data Type Description

periodStart timestamp A timestamp representing the start of the interval
period.

If included, this field must refer to the same point in
time (although not necessarily expressed in the same
time zone) as the period start time in the file name
and in the file header. If it does not match, an error
occurs.

contactsTransferredOut non-negative The number of contacts transferred out by the agent

15

GIS API | Capture historical data

Column Data Type Description

double during the period. Default value = 0.

contactsTransferredIn non-negative
double

The number of contacts transferred in to the agent
during the period.

This field is reserved for future use. Currently the
value is ignored.

contactsExternalIn non-negative
double

The number of external inbound contacts to that agent
during the period. Default value = 0.

This column is not applicable to chats. Enter zero for
this column.

contactsExternalOut non-negative
double

The number of external outbound contacts from the
agent during the period. Default value = 0.

This column is not applicable to chats. Enter zero for
this column.

totalReservedSeconds non-negative
double

The total reserved time for contacts for the service
queue for the agent during the period. If non-zero, the
reserved time is not counted as Ready/Waiting time.
Default = 0.

This column is not applicable to chats. Enter zero for
this column.

totalProratedReadyWaiting
sSeconds

non-negative
double

The total prorated Ready/Waiting time for the agent
and service queue.

When totaled across all service queues in this ACD,
this must be equal to the required field
totalUnproratedReadyWaitingSeconds.

If the prorated values are omitted or set to zero, the
Data Server divides the unprorated values equally
among the service queues in this ACD for which the
agent has agent-service queue productivity data

16

GIS API | Capture historical data

Column Data Type Description

during the period.

If the prorated values are specified, and add up to the
unprorated values, then the prorated values are used
for the agent-service queue combination.

If the prorated values are specified and do not add up
to the unprorated values, then for each agent-service
queue entry, the Data Server recalculates the prorated
value as the unprorated value weighted by the
specified prorated value divided by the sum of the
specified prorated values for all of the service queues
in this ACD for which the agent has agent-service
queue data in the period.

This is most useful for ACDs that assign
Ready/Waiting time to an agent for one service queue
and Not Ready/Busy time for other service queues. It
is important that unprorated and prorated Not
Ready/Busy times do not include times when the
agent is accruing Ready/Waiting or other time for
other service queues.

For ACDs that report Not Ready/Busy time for
service queues when the agent is handling calls or
Ready/Waiting time in another service queue, it is
important to remove all of the duplicate time and
report Not Ready/Busy time only when an agent is
Not Ready/Busy in all service queues simultaneously.
For this type of ACD, the total unprorated
Ready/Waiting time is the sum of each service
queue’s Ready/Waiting time and the total unprorated
Not Ready/Busy time is computed from the total in-
session (logged-in) time less the total in-service
(Talk, Hold, After Work, Ready/Waiting, and
Reserved) time.

17

GIS API | Capture historical data

Column Data Type Description

A non-interactive service queue, like chat, can be
Ready while the agent is answering chats as long as
the agent is not handling the maximum number of
chats.

totalProratedNotReady
BusySeconds

non-negative
double

The total prorated Not Ready/Busy time for the agent
and service queue.

When totaled across all service queues in this ACD,
this is equal to the required field
totalUnproratedNotReadyBusySeconds.

For a detailed explanation of this value, see the
description for the field
totalProratedReadyWaitingSeconds.

contactsAnswered non-negative
double

The number of contacts for the service queue
answered by the agent during the period.

The difference between this field and the required
field contactsHandled is up to the implementer. The
contactsHandled field is used for things such as
computing average handle times, while
contactsAnswered is used for computing average
speed of answer. Some ACDs make a distinction
between the two fields. For example, in some ACDs a
handled contact is a contact that ends during the
reporting interval, while an answered contact is a
contact that is answered during the reporting interval.

This field is reserved for future use. Currently the
value is ignored.

totalAnswerDelaySeconds non-negative
double

The total delay in answering contacts for the service
queue for contacts the agent answered during the
period.

This field is reserved for future use. Currently the

18

GIS API | Capture historical data

Column Data Type Description

value is ignored.

Examples

The following are examples of AgentProductivity.AGENT files.

Sequential Contacts

In this example, an agent talks to two customers sequentially. This is typical of voice contacts.

The GIS file resulting from these two contacts looks like this:

File name: 201701150000N0600_1_AgentProductivity.AGENT

Agent Date: 2017-01-15 INTERVAL: 00:00 TZOFFSET: -0600 ACD: 1

acdAgentId,acdServiceId,contactsHandled,contactsAnswered,

contactsTransferredOut,contactsExternalIn,contactsExternalOut,

totalTalkSeconds,totalHoldSeconds,totalAfterContactWorkSeconds,

totalPeriodHandleTimeSeconds,totalUnproratedReadyWaitingSeconds,

totalUnproratedNotReadyBusySeconds,totalUnproratedInSessionSeconds

5009,1,1,1,0,0,0,1200.000,0.000,0.000,1200.000,0.000,0.000,1800.000

5009,2,1,1,0,0,0,600.000,0.000,0.000,600.000,0.000,0.000,0.000

If the two contacts came in to the same service queue, the GIS file would look like this:

File name: 201701150000N0600_1_AgentProductivity.AGENT

Agent Date: 2017-01-15 INTERVAL: 00:00 TZOFFSET: -0600 ACD: 1

acdAgentId,acdServiceId,contactsHandled,contactsAnswered,

contactsTransferredOut,contactsExternalIn,contactsExternalOut,

totalTalkSeconds,totalHoldSeconds,totalAfterContact

19

GIS API | Capture historical data

WorkSeconds,totalPeriodHandleTimeSeconds,totalUnprorated

ReadyWaitingSeconds,totalUnproratedNotReadyBusySeconds,

totalUnproratedInSessionSeconds

5009,1,2,2,0,0,0,3000.000,0.000,0.000,1800.000,0.000,0.000,1800.000

Simultaneous Contacts (Both Within Interval)

In this example, an agent handles two contacts at the same time within an interval. This is typical when the
contacts are chat sessions.

The GIS file resulting from these two contacts looks like this:

File name: 201701150000N0600_1_AgentProductivity.AGENT

Agent Date: 2017-01-15 INTERVAL: 00:00 TZOFFSET: -0600 ACD: 1

acdAgentId,acdServiceId,contactsHandled,contactsAnswered,

contactsTransferredOut,contactsExternalIn,contactsExternalOut,

totalTalkSeconds,totalHoldSeconds,totalAfterContactWorkSeconds,

totalPeriodHandleTimeSeconds,totalUnproratedReadyWaitingSeconds,

totalUnproratedNotReadyBusySeconds,totalUnproratedInSessionSeconds

5009,1,1,1,0,0,0,1500.000,0.000,0.000,900.000,0.000,0.000,1800.000

5009,2,1,1,0,0,0,1500.000,0.000,0.000,900.000,0.000,0.000,0.000

If the two contacts came in to the same service queue, the GIS file would look like this:

File name: 201701150000N0600_1_AgentProductivity.AGENT

Agent Date: 2017-01-15 INTERVAL: 00:00 TZOFFSET: -0600 ACD: 1

acdAgentId,acdServiceId,contactsHandled,contactsAnswered,

contactsTransferredOut,contactsExternalIn,contactsExternalOut,

totalTalkSeconds,totalHoldSeconds,totalAfterContactWorkSeconds,

totalPeriodHandleTimeSeconds,totalUnproratedReadyWaitingSeconds,

totalUnproratedNotReadyBusySeconds,totalUnproratedInSessionSeconds

20

GIS API | Capture historical data

5009,1,2,2,0,0,0,3000.000,0.000,0.000,1800.000,0.000,0.000,1800.000

Simultaneous Contacts (One Crosses Interval Boundary)

In this example, an agent handles two contacts at the same time, and the second contact extends past the
interval boundary to end at 0:35.

Customer 1 begins chatting from 00:00 to 00:05. The agent responds to customer 1 from 00:05 to 00:10.
Customer 2 begins chatting from 00:05 to 00:15. Customer 1 responds to chatting from 00:10 to 00:20. The
agent responds to chatting with customer 2 from 00:15 to 00:20. The agent responds to chatting with
customer 1 from 00:20 to 00:25, when their conversation is completed. Customer 2 responds to chatting from
00:20 to 00:30. The agent responds chatting to customer 2 from 00:30 to 00:35, when their conversation is
completed.

The two GIS files resulting from these two contacts would like this:

File name: 201701150000N0600_1_AgentProductivity.AGENT

Agent Date: 2017-01-15 INTERVAL: 00:00 TZOFFSET: -0600 ACD: 1

acdAgentId,acdServiceId,contactsHandled,contactsAnswered,

contactsTransferredOut,contactsExternalIn,contactsExternalOut,

totalTalkSeconds,totalHoldSeconds,totalAfterContactWorkSeconds,

totalPeriodHandleTimeSeconds,totalUnproratedReadyWaitingSeconds,

totalUnproratedNotReadyBusySeconds,totalUnproratedInSessionSeconds

5009,1,1,1,0,0,0,1500.000,0.000,0.000,900.000,0.000,0.000,1800.000

5009,2,0,1,0,0,0,0.000,0.000,0.000,900.000,0.000,0.000,0.000

File name: 201701150030N0600_1_AgentProductivity.AGENT

Agent Date: 2017-01-15 INTERVAL: 00:30 TZOFFSET: -0600 ACD: 1

acdAgentId,acdServiceId,contactsHandled,contactsAnswered,

contactsTransferredOut,contactsExternalIn,contactsExternalOut,

21

GIS API | Capture historical data

totalTalkSeconds,totalHoldSeconds,totalAfterContactWorkSeconds,

totalPeriodHandleTimeSeconds,totalUnproratedReadyWaitingSeconds,

totalUnproratedNotReadyBusySeconds,totalUnproratedInSessionSeconds

5009,1,0,0,0,0,0,0.000,0.000,0.000,0.000,0.000,0.000,0.000

5009,2,1,0,0,0,0,1800.000,0.000,0.000,300.000,1500.000,0.000,1800.000

ServiceHistorical.SERVICE File
The ServiceHistorical.SERVICE file contains service queue data by 30-minute intervals from 00:00 to 23:59
for both interactive and non-interactive service queue types.

n Interactive service queue types consist of contacts in which agents and customers have real-time
communication, such as voice (call) or chat.

n Non-interactive service queue types consist of contacts in which agents and customers do not have
real-time communication, such as email, fax, and social media, as well as contact activities like
stuffing envelopes.

File Name Format

<date/time><tzoffset>_<ACD#>_ServiceHistorical.SERVICE

Element Description

<date/time> The date and time the file was generated, in YYYYMMDDHHMM
format.

EXAMPLE 201701151430 (14:30 on January 15, 2017). Time is
in 24-hour format.

<tzoffset> The time zone (where the ACD is located) date/time offset from GMT in
AHHMM format, where:

n A is either P (positive) or N (negative), characterizing the offset
from GMT

n HH is the number of offset hours

n MM is the number of offset minutes

EXAMPLE If the ACD is in Greenwich Mean Time (GMT), then
the <tzoffset> is P0000. If the ACD is in Eastern Standard Time
(EST) (GMT–0500), then the <tzoffset> is N0500.

22

GIS API | Capture historical data

Element Description

<ACD#> The ACD number (see ACD Numbering).

File Header

SERVICE DATE: <date> INTERVAL: <time> TZOFFSET: <tzoffset> ACD: <ACD#>

Element Description

<date> The date the file was generated, in YYYY-MM-DD format.

<time> The beginning of the 30-minute interval covered by the data, in HH:MM
24-hour format.

<tzoffset> The time zone (where the ACD is located) offset from GMT, in +HHMM,
-HHMM, or HHMM format. If plus or minus is not specified, the offset is
assumed to be plus (positive).

<ACD#> The number of the ACD that is the source of the data.

The file header must be the first non-blank line in the file.

NOTE

The SERVICE DATE, INTERVAL, and TZOFFSET values must represent a period start time that
matches those in the file name as well as a historical period supported by WFM. It is not required
that the individual values match, but only to mean the same point in time. For example, if the file
is named:

201301231800N0500_1_ServiceHistorical.SERVICE

and the header is:

SERVICE DATE: 2013-01-23 INTERVAL: 23:00 TZOFFSET: 0000 ACD: 1

there is no error, because each is expressing the same point in time in different time zones. The
time 18:00 in the time zone N0500 (a 5-hour negative offset from GMT) is the same as the time
23:00 in the GMT time zone.

Column Header

<columnname1>,<columnname2>,<columnname3>. . .,<columnnameN>

Where <columnname1> through <columnnameN> are the names of columns represented in the file.

23

GIS API | Capture historical data

Column names are not restricted to required and optional columns. You can add additional unrecognized
columns and associated data (for example, agent names or service names) to make the GIS files more
human-readable. The GIS API ignores these columns and their associated data.

Column order is not specified. The only requirement for column order is that the column names are in the
same order as the data in each line.

Column names cannot contain commas, are case sensitive, and cannot start or end with a space (such spaces
are automatically trimmed when the file is parsed). Column names must be unique. Duplicate column names
(after space trimming) result in an error.

The column header must be the second non-blank line in the file.

Data Lines

<columnvalue1>,<columnvalue2>,<columnvalue3>. . .,<columnvalueN>

Where<columnvalue1> through <columnvalueN> are the values of <columnname1> through
<columnnameN> for one row of data.

Each line of data corresponds to one data item within the file, with one value for each column, in the same
order as the column header. The values are separated by commas. No value can contain a comma. Data
values are trimmed of leading and trailing white space when parsed.

The third and subsequent non-blank lines in the file must be data lines. It is possible for a file to contain no
data lines. This means there were no data items for that period.

Required Columns

The following table describes the columns that are required to be in the ServiceHistorical.SERVICE file for
both interactive and non-interactive service queue types.

NOTE

If the ServiceHistorical.SERVICE file describes a non-interactive service queue, some column
names will not make sense. See the Description column for clarification.

For non-interactive service queues, if columns do not apply, then set the values in these columns to
0 (zero).

Column Data Type Description

acdServiceId string The ID of the service queue in the ACD. Can be
alphanumeric.

24

GIS API | Capture historical data

Column Data Type Description

contactsOffered non-negative
double

The number of contacts for the service queue
offered to agents during the period.

contactsHandled non-negative
double

The number of contacts for the service queue
handled by agents during the period.

contactsAnswered non-negative
double

The number of contacts for the service queue
answered by agents during the period.

The difference between this field and the required
field contactsHandled is up to the implementer.
The contactsHandled field is used for things such
as forecasting numbers of contacts and computing
average handle times, while contactsAnswered is
used for computing average speed of answer.
Some ACDs make a distinction between the two
fields; for example, in some ACDs a handled
contact is a contact that ends during the reporting
interval, while an answered contact is a contact
that is answered during the reporting interval.

contactsAbandoned non-negative
double

The number of contacts for the service queue
abandoned during the period.

totalTalkSeconds non-negative
double

The total talk time on contacts for the service
queue handled by agents during the period.

totalHoldSeconds non-negative
double

The total hold time on contacts for the service
queue handled by agents during the period.

This column is not applicable to chats. Enter zero
for this column.

totalAfterContactWorkSeconds non-negative
double

The total after contact work time on contacts for
the service queue handled by agents during the
period.

totalAnswerDelaySeconds non-negative The total delay in answering contacts for the

25

GIS API | Capture historical data

Column Data Type Description

double service for contacts agents answered during the
period.

This column is not applicable to chats. Enter zero
for this column.

serviceLevelPercent non-negative
double ≤ 100

The total delay in answering contacts for the
service for contacts agents answered during the
period.

Optional Columns

The following table describes the columns that are optional in ServiceHistorical.SERVICE file. If not
included, the default value is used for the metric.

Columns Data Type Description

periodStart timestamp A timestamp representing the start of the interval period.

If included, this field must refer to the same point in time
(although not necessarily expressed in the same time zone)
as the period start time in the file name and in the file
header. If it does not match, an error occurs.

contactsBlocked non-negative
double

The number of contacts blocked for the service queue
during the period. Default value = 0.

serviceLevelSeconds positive double The service level threshold in seconds for the service queue
during the period.

This field is reserved for future use. Currently the value is
ignored.

contactsInQueue non-negative
double

The maximum number of contacts in queue for the interval.
Used only with non-interactive queues. For interactive
queues, this value will always be zero no matter what value
is entered in this column.

26

GIS API | Capture historical data

Missing Columns

Some columns, such as totalInServiceSeconds and totalInSessionSeconds, might appear to be missing. In
fact, these are values that need to be prorated; they are computed by combining other historical service queue
data with agent productivity data. This is done so that per-service queue values from historical service queue
data add up to the same totals as the per-agent-per-service queue values from agent productivity data.

For example, in most ACDs, time in a Ready/Waiting state is not associated with a service queue. Rather, the
agent is just in that state. In the AgentProductivity.AGENT file, this total is provided in each agent-service
queue entry for the agent as totalUnproratedReadyWaitingTime. From that, we compute a
proratedReadyWaitingTime for each service queue (the total unprorated value divided by the number of
service queues for which the agent has agent-service queue productivity data during the period).

A similar approach is taken for totalUnproratedNotReadyBusySeconds, which is converted to
propratedNotReadyBusySeconds. We use the prorated values to compute totals for a service queue. As a
result, we don’t count the same time twice (or more for multiple service queues) and the metrics are zero-
sum.

If the totalProratedReadyWaitingTime and/or totalProratedNotReadyBusyTime values are specified, we use
these as a guide to prorating the unprorated times. If they add up correctly, the specified prorated values are
used. If not, we use them as a weight (using the specified prorated value divided by the sum of the specified
prorated values across all the service queues for the agent during the interval) for computing the prorated
values.

Implementers who want to have more control over how time is prorated, other than dividing by the number
of service queues, can add the columns totalProratedReadyWaitingSeconds and
totalProratedNotReadyBusySeconds to the AgentProductivity.AGENT file.

It is strongly recommended that you ensure that the sum of the totalProratedReadyWaitingSeconds values for
each agent-service queue line for a given agent during a period adds up to the
totalUnproratedReadyWaitingSeconds value in each agent-service queue line for that agent, and likewise for
Not Ready/Busy time. It is also strongly recommended that you ensure that Not Ready/Busy time is never
counted for a service queue if that time is concurrent with time in another state for other service queues.

For example, for ACDs that report Not Ready/Busy time for one service queue while an agent is handling
calls in another service queue, the Not Ready/Busy time concurrent with call handling should not be included
in the specified unprorated or prorated values. Likewise, if an ACD counts Ready time for one service queue
while also counting Not Ready/Busy time for another service queue, that Not Ready/Busy time should not be
included in the specified unprorated or prorated values. Only the total unprorated values

27

GIS API | Capture historical data

totalUnproratedReadyWaitingTime and totalUnproratedNotReadyBusyTime should be double counted, and
only as time an agent is Ready/Waiting for some service queue, and time an agent is Not Ready/Busy for all
service queues, respectively.

EXAMPLE

File name: 201301151330N0600_1_ServiceHistorical.SERVICE

SERVICE DATE: 2013-01-15 INTERVAL: 13:30 TZOFFSET: -0600 ACD: 1

acdServiceId,contactsOffered,contactsHandled,contacts

Answered,contactsAbandoned,totalTalkSeconds,totalHold

Seconds,totalAfterContactWorkSeconds,totalAnswerDelay

Seconds,serviceLevelPercent

5236,7,8,9,0,1314.324,0.000,238.228,80929.903,0.000

5240,4,4,4,0,365.039,0.000,104.644,35600.210,0.000

AgentState.EVENT File
The AgentState.EVENT file contains agent state data used to calculate adherence and conformance. The file
must contain all agent state data for the entire day indicated in file name and file header. The day is
interpreted as midnight to midnight in the tenant’s time zone. The file replaces any existing agent state data
for that day.

File Name Format

<date>_<ACD#>_AgentState.EVENT

Element Description

<date> The date the file was generated for, in YYYYMMDD format.

<ACD#> The ACD number (see ACD Numbering).

File Header

EVENT DATE: <date> ACD: <ACD#>

Element Description

<date> The date the file was generated for, in YYYY-MM-DD format.

<ACD#> The number of the ACD that is the source of the data.

The file header must be the first non-blank line in the file.

28

GIS API | Capture historical data

NOTE

The EVENT DATE values must represent the server date that matches both that in the file name
and the date of all agent events in the file. For example, if a file is named:

20160123_1_AgentState.EVENT

then the file must contain only events for January 23, 2016 and no other date in the tenant time
zone. This does not mean that the individual events must be expressed in the tenant time zone,
only that after the events are converted to the tenant time zone by the Data Server, the date of the
converted event timestamp must match the date in the file name and the file header.

Column Header

<columnname1>,<columnname2>,<columnname3>. . .,<columnnameN>

Where <columnname1> through <columnnameN> are the names of columns represented in the file.

Column names are not restricted to required and optional columns. You can add additional unrecognized
columns and associated data (for example, agent names or service names) to make the GIS files more
human-readable. The GIS API ignores these columns and their associated data.

Column order is not specified. The only requirement for column order is that the column names are in the
same order as the data in each line.

Column names cannot contain commas, are case sensitive, and cannot start or end with a space (such spaces
are automatically trimmed when the file is parsed). Column names must be unique. Duplicate column names
(after space trimming) result in an error.

The column header must be the second non-blank line in the file.

Data Lines

<columnvalue1>,<columnvalue2>,<columnvalue3>. . .,<columnvalueN>

Where <columnvalue1> through <columnvalueN> are the values of <columnname1> through
<columnnameN> for one row of data.

Each line of data corresponds to one data item within the file, with one value for each column, in the same
order as the column header. The values are separated by commas. No value can contain a comma. Data
values are trimmed of leading and trailing white space when parsed.

The third and subsequent non-blank lines in the file must be data lines. It is possible for a file to contain no
data lines. This means there were no data items for that period.

29

GIS API | Capture historical data

Required Columns

The following table describes the columns that are required to be in the AgentState.EVENT file.

Column Data Type Description

acdAgentId string The ID of the agent in the ACD.

eventDateTime timestamp A timestamp representing the point in time at which the agent
state event took place, consisting of the following data types:

<date> <time> <tzoffset>

If the tzoffset is omitted, the date and time are assumed to be
in GMT time.

agentState string, long, or null A code representing the agent state. See Agent State Values for
more information.

Optional Columns

The following table describes the columns that are optional in the AgentState.EVENT file. If not included,
the default value is used for the metric.

Column Data Type Description

reasonCode string, long, or null The reason code associated with the agent state change.
Default value = NULL.

Agent State Values

The agentState field accepts only certain values. If an event does not match one of these agent states, no line
for that event should be written to the file. Each state has an associated integer or string code that can be
used as a value. The following table describes the agent states and their associated codes.

Agent State Code Code Description

Logging Out/
Out of Service

1 LO The agent logs out of the
ACD

Ready/Waiting 2 RE The agent is ready to handle a
contact

Talking/In Contact 3 TK The agent is talking to a

30

GIS API | Capture historical data

Agent State Code Code Description

contact

Work After Contact 4 WK The agent is performing after-
contact work

On Hold 5 OH The agent is on hold

Not Ready/Busy 6 NR The agent is not ready to
receive contacts

Only one event should be written per agent per timestamp. If multiple events are written, it is likely (but not
guaranteed) that only the last event in the file for the agent for the same timestamp will be captured.

For ACDs that report an agent as Ready/Waiting or Not Ready/Busy for specific service queues, and use one
of these values in one service queue while the agent is in another state on another service queue, the events
must be converted to be non-service queue specific. For example, if an ACD has an agent as Talking in one
service queue and Not Ready/Busy in other service queues, a single TK or 3 agentState should be written.

In general, when an agent is in multiple states for different service queues, and only one event per agent per
timestamp is written, priorities are established as follows:

n Every other event takes priority over Logged Out

n Every event except Logged Out takes priority over Not Ready/Busy

n Every event except Logged Out and Not Ready/Busy takes priority over Ready/Waiting

EXAMPLE

File name: 20160115_1_AgentState.EVENT

EVENT DATE: 2016-01-15 ACD: 1

acdAgentId,eventDateTime,agentState,reasonCode

[lines omitted for brevity]

5009,2016-01-15 09:00:08.977,6,3

5073,2016-01-15 09:00:08.977,3,NULL

5073,2016-01-15 09:00:25.983,4,NULL

5073,2016-01-15 09:01:13.367,2,NULL

5073,2016-01-15 09:01:14.367,3,NULL

[lines omitted for brevity]

31

GIS API | Integrate your HRMS with Webex WFO

5009,2016-01-15 16:51:24.247,3,NULL

5009,2016-01-15 16:55:43.720,5,NULL

5009,2016-01-15 16:56:04.553,3,NULL

5009,2016-01-15 17:01:51.483,4,NULL

5009,2016-01-15 17:02:02.313,1,NULL

5073,2016-01-15 17:04:55.210,4,NULL

5073,2016-01-15 17:05:20.987,1,NULL

Integrate your HRMS with Webex WFO
If HRMS (Human Resources Management System) integration is enabled (Application Management > WFM
Configuration > HRMS Configuration), Webex WFO will import vacation data from your HRMS and export
data on vacation hours used to a file that your HRMS can use.

Vacation data is exported once a day from Webex WFO to your HRMS at the time configured on the HRMS
Configuration page. Vacation data is imported from your HRMS to Webex WFO throughout the day,
whenever a GIS file is made available to Webex WFO.

IMPORTANT

Webex WFO uses either an agent’s user name or an agent’s employee ID as configured on the
Users page to identify vacation hours data. Whichever identifier you use, it must be identical in
Webex WFO and the HRMS for the data to be written to the correct record in each.

By default, the Data Server monitors the following folder for the text file sent from the HRMS to Webex
WFO:

C:\Program Files\Common Files\Webex WFO\Data

Server\gis\vacationreports\<tenant>

NOTE

If the location of GIS files is changed from the default when configuring the Data Server, HRMS
files will be saved to that path:

. .\gis\vacationreports\<tenant>

See the topic “Data Server Configuration” in the Webex WFO User Guide for more information.

As soon as the file appears, data from the file is imported into Webex WFO using the GIS API. The
imported data overwrites any existing vacation data in the Webex WFO database.

32

GIS API | Integrate your HRMS with Webex WFO

BEST PRACTICE Data is exported from Webex WFO daily. It is up to the customer to determine
the frequency at which data will be imported from the HRMS to Webex WFO. Best practice is to
import the data at the interval at which earned vacation hours are calculated in the HRMS.

At the time of day configured on the HRMS Configuration page, Webex WFO outputs a report file that
contains the number of hours used by agents for each day for the last seven days. This file also contains
pending and approved hours as of the current date. Hours are considered used for schedules ending the
previous day. Any schedules in progress are not counted as used.

When the text files are processed by Webex WFO, they are archived on the Data Server and in the Cloud for
troubleshooting purposes.

Vacation export files are not automatically deleted. It is up to the customer to determine when and if the
export files are to be deleted.

Import file details
The following table displays the details of the import file sent from the HRMS to WFM.

IMPORTANT Every column header is required to be present in the import file, even if data is not
required to be present for that column. If a column header is missing, then the import will fail.

Element Description

File Location C:\Program Files\Common Files\Webex WFO\Data
Server\gis\vacationreports\<tenant>

File Name VacationHours_From_HRMS

File Header VACATION FROM HRMS DATE: <date>

Column Headers login

Data optional. This is the email address that users enter when they log in
to Webex WFO. Although login and employeeId are individually
optional, you are required to include data in at least one of these two
columns. Otherwise, the data import file will not be processed.

vacationTypeLabel

Data required. The data value entered for vacationTypeLabel in all rows
must match exactly the vacation type name as configured in Webex WFO
(Application Management > Vacation Planning > Vacation Types). This

33

GIS API | Integrate your HRMS with Webex WFO

Element Description

value cannot contain commas.

availableHours

Data required. This is the number of hours of vacation available to the
agent.

totalEarnedHours

Data optional. This is the total number of vacation hours earned by the
agent for the year. If the optional totalEarnedHours field is not included in
the file, Webex WFO defaults its values to zero and overwrites the
existing values. This can result in a negative value when calculating the
hours used for an agent. If the field is included in the file, the value
entered cannot exceed 9999.

employeeId

Data optional. Although login and employeeId are individually optional,
you are required to include data in at least one of these two columns.
Otherwise, the data import file will not be processed.

The following is an example of an import file.

VACATION FROM HRMS DATE: 2018-04-19

login,vacationTypeLabel,availableHours,totalEarnedHours,employeeId

smithj@example.com,Floating Holiday,16,24,john.smith

smithj@example.com,Vacation,120,160,john.smith

jonest@generic.com,Vacation,70,80,teri.jones

adamsb@generic.com,Vacation,120,120,betty.adams

NOTE Data elements are limited to 2 digits to the right of the decimal point. If there are more than
2 digits, the value will be rounded to 2 digits before import. Errors in records are logged in the log
file.
Commas that are part of the HRMS import data must be escaped with a backslash (for example,
“3\,000”) in order to be treated as literals and not file delimiters.

Export file details
The following table displays the details of the export file sent from WFM to the HRMS.

34

GIS API | Integrate your HRMS with Webex WFO

Element Description

File Location C:\Program Files\Common Files\Webex WFO\Data
Server\gis\vacationreports\<tenant name>

File Name vacation_<date>_WFM

File Header VACATION FROM WFM DATE: <date>

Column Headers login
date
vacationTypeLabel
usedHours
requestedHours
approvedHours
employeeId
acdId

n All agents that have a vacation plan via the import file (see Import file details) are included in the
export file.

n Only dates with usedHours in the past 7 days are included in the export for each agent.

n If a date has usedHours for an agent for at least one vacation type, then all vacation types are shown
in the file, even if no hours were used on that date. In that case, the usedHours field displays a dash (
—).

n The requestedHours and approvedHours fields appear only on the last date that is reported for each
agent. These values are not tied to a specific date since they are totals for all future dates.

n If an agent does not have any used hours for any vacation type in the 7 day period, then a date row is
inserted for yesterday for each vacation type and requestedHours and approvedHours are reported
there.

The output export file contains the following for each vacation type:

n Used Hours: The hours used for the date on the row. This value is based on the duration of vacation
type exceptions in the agent’s schedule for the date. Vacation type exceptions are configured on the
Webex WFO Vacation Types page (Application Management > Vacation Planning > Vacation
Types).

n Requested Hours: The total hours that are pending and not yet approved at the current time.

35

GIS API | Integrate your HRMS with Webex WFO

n Approved Hours: The total approved hours. For partial day requests, the duration of the request is
used. For all-day requests, the duration is calculated as Minimum Hours Per Week ÷ 5 as defined in
the agent’s Full Time Equivalents Profile, configured on the Webex WFO Full Time Equivalents
Profiles page (Application Management > Vacation Planning > Full Time Equivalents Profiles).

The following is an example of an export file.

VACATION FROM WFM DATE: 2018-04-20

login,date,vacationTypeLabel,usedHours,requestedHours,approvedHours,

employeeId,acdId

smithj@example.com,2018-04-13,Floating Holiday,8.0,-,-,john.smith,2

smithj@example.com,2018-04-13,Vacation,-,-,-,john.smith,2

smithj@example.com,2018-04-15,Floating Holiday,-,-,-,john.smith,2

smithj@example.com,2018-04-15,Vacation,8.0,16.0,8.0,john.smith,2

jonest@example.com,2018-04-14,Vacation,4.0,-,-,teri.jones,1

jonest@example.com,2018-04-15,Vacation,8.0,-,-,teri.jones,1

adamsb@example.com,2018-04-19,Vacation,-,-,-,teri.jones,1

In this example, vacation hours are reported as follows.

Employee Vacation Hour Usage

smithj n Used 8 hours of Floating Holiday on April 13.

n Used 8 hours of Vacation on April 15.

n Has 16 hours of requests for Vacation that are pending approval on or
after April 20.

n Has 8 hours of requests for Vacation that are approved on or after April
20.

n Has no approved or pending requests for a Floating Holiday on or after
April 20.

jonest n Used 4 hours of Vacation on April 14.

n Used 8 hours of Vacation on April 15.

n Has no approved or pending requests for a Floating Holiday on or after
April 20.

adamsb n Has no used hours in the 7-day period starting April 13.

36

GIS API | Real-time data capture API

Employee Vacation Hour Usage

n Has no approved or pending requests for a Floating Holiday on or after
April 20.

Real-time data capture API
The real-time data capture API can be used to notify Webex WFO of real-time agent state information for
any ACD. This real-time data is then used by Webex WFO to calculate agent adherence and conformance.

The real-time API is an HTTPS REST API.

API Definition
Applications using this API must do the following:

1. On application startup, establish an HTTPS session with the Application server.

2. For the life of the application:

a. Monitor agent state changes using an ACD-specific integration method.

b. Submit agent state changes to the Application server.

3. On application shutdown, destroy the HTTPS session.

Establish Session

Before providing agent state data to Webex WFO, you must first establish an HTTPS session (log in).

To log in, issue an HTTPS POST request to:

https://<Webex WFO Cloud host>/api/rest/authorize

The Webex WFO cloud host is set during installation. See the Service Provider Installation Guide for more
information.

The body of the request must be in the following format:

{

“userid”:“<username>”,

“password”:“<password>”,

“locale”:“en”

}

37

GIS API | Real-time data capture API

NOTE The user whose credentials are in the <username> and <password> strings above must have
Administer WFM permissions. If not, the API will not work.

NOTE Contact Support if the credentials used are valid for multiple tenants.

A response of 200 OK indicates success.

Submit Agent State Information

You can submit each agent state change as a separate API request, or bundle several agent state changes into
a single request. In general, sending multiple agent state changes in a single request results in higher
performance.

To submit agent state information, issue an HTTPS POST request to:

https://<Webex WFO Cloud host>/api/rest/scheduling/

gis/realTimeAgentState?acdServerId=<value>

The body of the request must be in the following format:

[

{

“acdAgentId”:string,

“gisStateIdentifier”:string,

“timestamp”:number,

“reasonCode”:string

}, ...

]

The fields in this request are defined in the following table.

Field Descriptions

acdAgentId The ACD identifier for the agent. This is the agent’s ACD ID in Webex
WFO (Application Management > Users > Agents).

n Ensure that the format used in the ACD agent IDs that are synced
from the ACD to Webex WFO is used whenever sending historical
and real-time data to Webex WFO. If there is a case mismatch (for

example, the agent ID in the ACD is JSMITH but in the data

38

GIS API | Real-time data capture API

Field Descriptions

import file it is Jsmith), the data import will fail.

acdServerId Identifier of the ACD. This is the number of the ACD shown on the
ACD Configuration page.

gisStateIdentifier The identifier for the agent state.

n 1—Logout. The agent has logged out of the ACD. In many ACDs,
a reason code might accompany this state to indicate the reason for
the state change.

n 2—Not Ready. The agent is not accepting contacts from the ACD.
In many ACDs, a reason code might accompany this state to
indicate the reason for the state change.

n 3—Ready. The agent is ready to accept contacts from the ACD.

n 4—Talking. The agent is on a contact.

n 5—Work Not Ready. The agent is engaged in after contact work
and will enter a Not Ready state when finished.

n 6—Work Ready. The agent is engaged in after contact work and
will enter a Ready state when finished.

n 10—Hold. The agent has placed the contact on hold.

NOTE If the ACD has an after contact work state, but makes no
distinction between Work Not Ready and Work Ready, then either
state can be used.

timestamp The time that the agent state change took place, expressed in milliseconds
since epoch. Timestamps must be sent in UTC expressed in epoch time in
milliseconds.

reasonCode An optional reason code. This can be null or blank. Valid values are any
alphabetical characters and symbols except the comma, and numbers 1–
65535..

EXAMPLE

The following is an example of an agent state change sent as a single API request.

39

GIS API | Real-time data capture API

n Agent 5009 goes into the hold state at Wed, 27 Jun 2012 18:03:27 GMT.

[

{

“acdAgentId”:“5009”,

“gisStateIdentifier”:“10”,

“timestamp”:1340820207000,

“reasonCode”:null

}

]

The following is an example of multiple agent state changes bundled together into a single request.

n Agent 5009 goes Not Ready with reason code 9 at Wed, 27 Jun 2012 18:03:39 GMT.

n Agent 5009 goes Ready at Wed, 27 Jun 2012 18:03:40 GMT.

n Agent 5002 goes Not Ready with reason code 2 at Wed, 27 Jun 2012 18:03:39 GMT

[

{

“acdAgentId”:“5009”,

“gisStateIdentifier”:“2”,

“timestamp”:1340820219000,

“reasonCode”:9

},

{

“acdAgentId”:“5009”,

“gisStateIdentifier”:“3”,

“timestamp”:1340820220000,

“reasonCode”:null

},

{

40

GIS API | Import contacts in bulk

“acdAgentId”:“5002”,

“gisStateIdentifier”:“2”,

“timestamp”:1340820219000,

“reasonCode”:2

}

Destroy Session

On application shutdown, you should destroy the HTTPS session (log out).

To log out, issue an HTTPS DELETE request to:

https://<Webex WFO Cloud host>/

api/rest/authorize

A response of 200 OK indicates success.

Import contacts in bulk
Third parties use the Bulk Contact Import APIs to merge and insert metadata and recordings in a multi-part
HTTPS request.

There are two Bulk Import APIs:

n Bulk Contact Import API—Used by third parties; allows insertion of both metadata and recordings in
a multi-part HTTPS request

NOTE You can also use the Bulk Contact Import API to import contacts in bulk through the

Data Server. See Using the Data Server for bulk contact import.

n Real-time Contact API—Used by Webex WFO Smart Desktop recording client; inserts metadata first
and then uploads recordings separately later, based on the response from the metadata insertion. This
allows the client to delay uploading recordings and allows contacts to be inserted while the call is still
in progress. However, this forces the client to track IDs to upload the recordings for the correct
contact.

41

GIS API | Import contacts in bulk

Protocol and URI

Bulk contact import API

URI /api/upload/contacts

Method POST

Permissions Administer Tenant

Content Type multipart/form-data

Real-time bulk contact import API (metadata)

URI /api/rest/wfo/contact/import

Method POST

Permissions Capture Contacts, Record Voice/Record Screen

Content Type application/JSON

Supported formats
The following formats can be included in a multipart request.

Type Description

CSV A comma-separated file used to assign metadata.

JSON The same metadata format as the Real-time API, but can be used for bulk
import.

WAV An audio recording format.

WEBM A combined audio and video recording format.

WEBMA An audio-only (WebM container) format.

WEBMV A video-only (WebM container) format.

SPX An audio format.

WMV A combined audio and video recording format (or video only if paired

42

GIS API | Import contacts in bulk

Type Description

with audio in the same contact).

OPUS An audio format.

Request and response fields
The CSV and JSON files include fields defined in the following table. Not all fields are used in both types of
files. The file the field applies to is indicated in the description.

Name Req? Description

AgentId Y Used in CSV and JSON.

The Agent ID in one of three formats. Processing figures out
which format is used based on parsing the contents.

n Person ID. A unique identifier from WfoPerson.id. This
number is also used in the User Export spreadsheet
(Application Management > Global > Users > Import
and Export > Export > User ID column). It is not the
same as the ID in the Webex WFO user profile.

n AD Login. A domain\username (requires “\”).

n Email address. An email address (requires “@”).

When using a CSV to upload contacts, the agent ID is
required. If you are using JSON to make the request, the agent
ID is optional. In the latter case, the agent ID is set to the ID of
the authenticated user initiating the upload.

Max characters = 254
Default = none

AssocCallId N Used in CSV and JSON.

An ID that ties contacts together. For example, a transferred
call from one agent to another each have the same ID.

Max characters = 52
Default = NULL

43

GIS API | Import contacts in bulk

Name Req? Description

Audio.Location N Used in CSV and JSON.

In the Audio sub-object. The key (file) name of the recording
in the multipart request. This can be any supported recording
format (audio/screen/combined). Only a single audio file per
contact is allowed. The key name must have a valid extension
that matches the media type of the recording. The extension
identifies the file as an audio or screen recording, or both.

Max characters = 128
Default = None

Audio.StartTimeMs N Used in CSV and JSON.

In the Audio sub-object. The start time in milliseconds GMT
since 1970-01-01 (UNIX time) of the audio recording. This is
used to determine the audio offset from when the contact starts.

Max characters = long
Default = ContactStartTimeMs

CalledAddress N Used in CSV.

The called phone number.

Max characters = 64
Default = Empty string

Called N Used in JSON.

The called phone number.

Max characters = 64
Default = NULL

CallId N Used in CSV and JSON.

An ID that identifies a contact.

Max characters = 128
Default = NULL

44

GIS API | Import contacts in bulk

Name Req? Description

Calling N Used in JSON.

The calling phone number.

Max characters = 64
Default = NULL

CallingAddress N Used in CSV.

The calling phone number.

Max characters = 64
Default = Empty string

ClientTimeZone N Used in CSV and JSON.

The time zone in UTC format. Windows Time is also
supported. The Desktop Recording client sends Windows
Time, which is mapped to Olson time.

Max characters = 255
Default = Customer’s time zone as defined in Webex WFO

EXAMPLE –06:00

ContactStartTimeMs N Used in CSV and JSON.

The start time in milliseconds GMT since 1970-01-01 (UNIX
time). A value in this field is required, so if the value is
missing, the API uses the current upload time. Note that this
likely results in a poor user experience, with many contacts
that have the same timestamp.

IMPORTANT If you are importing contacts with
Excel, you must format the Start Time column to
display milliseconds (consult the Excel user
documentation for more information). Otherwise, Excel
truncates milliseconds, resulting in a false time and
preventing recordings from importing correctly.

45

GIS API | Import contacts in bulk

Name Req? Description

Max characters = long
Default = current upload time

EXAMPLE 1447100000000 - 11/09/2015 20:13:20
GMT

Direction N Used in CSV and JSON.

The direction of the call, inbound or outbound.

1 = outbound
0 = inbound

Max characters = 1
Default = NULL

Line N Used in CSV and JSON.

The agent’s line/extension.

Max characters = 64
Default = NULL

metadata.<custom metadata
field name>

N Used in CSV.

The custom metadata fields to populate. The field will be
created if it does not exist. Any column beginning with
“metadata” will be treated as a custom metadata field.

EXAMPLE To set “accountNumber”, create a column
named “metadata.accountNumber”.

Max characters field name = 39
Max characters of custom metadata value = 2056

CustomMetadata N Used in JSON.

The custom metadata fields to populate. The field will be
created if it does not exist. The object contains data in the form
of name/value pairs.

46

GIS API | Import contacts in bulk

Name Req? Description

EXAMPLE “accountNumber”:”123456”

Max characters field name = 39
Max characters of custom metadata value = 2056

Recording1 Y Used in CSV.

The key (file) name of the recording in the multipart request.
This can be any supported recording format
(audio/screen/combined). Only a single audio file per contact is
allowed. The key name must have a valid extension that
matches the media type of the recording. The extension
identifies the file as an audio or screen recording, or both.

Max characters = 128
Default = None

Recording2 N Used in CSV.

The key (file) name of the recording in the multipart request.
This can be any supported recording format
(audio/screen/combined). Only a single audio file per contact is
allowed. The key name must have a valid extension that
matches the media type of the recording. The extension
identifies the file as an audio or screen recording, or both.

Max characters = 128
Default = None

Recording3 N Used in CSV.

The key (file) name of the recording in the multipart request.
This can be any supported recording format
(audio/screen/combined). Only a single audio file per contact is
allowed. The key name must have a valid extension that
matches the media type of the recording. The extension
identifies the file as an audio or screen recording, or both.

NOTE There must be an audio file or the import fails.

47

GIS API | Import contacts in bulk

Name Req? Description

Max characters = 128
Default = None

Recording2Offset N Used in CSV.

The offset of Recording2 from Recording1.

EXAMPLE An audio file (WAV) that starts 5 seconds
after the screen file (WEBM) has an offset of 5000
(5000 = 5 seconds).

Max characters = Long
Default = 0

Screen.Location N Used in CSV and JSON.

In the Screen sub-object. The key (file) name of the recording
in the multipart request. This can be any supported recording
format (audio/screen/combined). Only a single audio file per
contact is allowed. The key name must have a valid extension
that matches the media type of the recording. The extension
identifies the file as an audio or screen recording, or both.

Max characters = 128
Default = None

Screen.StartTimeMs N Used in CSV and JSON.

In the Screen sub-object. The start time in milliseconds GMT
since 1970-01-01 (UNIX time) of the screen recording. This is
used to figure out the screen offset from when the contact
starts.

Max characters = long
Default = ContactStartTimeMs

CSV file examples
CSV can be uploaded as part of a multipart upload request. Some rules regarding the format are as follows.

48

GIS API | Import contacts in bulk

n The number of columns is variable. For example, if you always want to use the customer’s time zone,
you do not have to include the TimeZone column in the CSV.

n The columns included in the CSV can be in any order.

n The number of columns in each row must match the number of header columns.

n If a value has a comma, it must be surrounded by quotes.

n If a value is not known for a specific contact, but the header exists, use a empty string for that
column.

NOTE A successful response is formatted in JSON, because the response adds some status
for each contact and recording.

Full example

This example shows a file that uses every field possible for a CSV file.

1 AgentId,ContactStartTimeMs,TimeZone,AssocCallId,CallId,CalledAddress,Line,CallingAd
dress,Direction,Recording1,Recording2,Recording2Offset,metadata.accountNumber

2 abc/bunkowm,1447100000000,America/Chicago,103585664793210000,30611848,1801,1800,180
0,1,call1.webmv,call1.wav,5000,1234567890

3 mark.bunkowske@abc.com,1447110000000,America/Chicago,103585664793220000,30611848,18
01,1800,1800,1,call2.wav,,,987654321

Short example

This example shows only the fields required for a CSV file.

1 AgentId,ContactStartTimeMs,Recording1
2 2,1447100000000,call1.wav
3 2,1447110000000,call2.wav

JSON file examples
Contact information can be imported into Webex WFO in JSON format as an alternative to CSV format.

Full Example

The following is an example of a formatted JSON file.

1 {
2 "AgentId":"john.smith@acme.com",
3 "AssocCallId":"103585664793254280",
4 "CallId":"30611848",
5 "CalledAddress":"1801",

49

GIS API | Import contacts in bulk

6 "CallingAddress":"1800",
7 "ClientTimeZone":"Central Standard Time",
8 "ContactStartTimeMs":1447075073000,
9 "Direction":1,

10 "Audio":[
11 {
12 "Location":"25.wav",
13 "StartTimeMs":1447075080000
14 }
15],
16 "Screen":[
17 "Location":"25.webm",
18 "StartTimeMs":1447075075000
19],
20 "CustomMetadata":{
21 "accountNumber":"123456",
22 "department":"sales"
23 }
24 }

Short example

This example shows only the fields required for a JSON file.

1 {
2 "AgentId":"acme\smithj",
3 "ContactStartTimeMs":1447075073000,
4 "Audio":[
5 {
6 "Location":"25.wav"
7 }
8]
9 }

ZIP format
The ZIP format is handled differently than CSV or JSON, in that it is a collection of files that are processed
as if they were individual files within the multipart request.

n The name of the file is the key that needs to be referenced in the CSV/JSON.

n Any folder structure in the ZIP file is flattened and ignored.

For example, a multipart request looks like the following.

1 batch.zip
2 batch.csv (contains 2 rows, for call1 and call2)
3 call1.wav
4 call2.wav

50

GIS API | Import contacts in bulk

This multipart request is processed as if the files were all in the ZIP or all individually in the multipart
request.

Notes

n The order of files does not matter.

n An upload for a contact that contains a recording file name but does not include that recording will
fail to be inserted.

n An upload that contains a recording the is not referenced in a CSV or JSON will ignore that
recording.

IMPORTANT You must have Tenant Administrator access, access to the data server to use for the
Bulk Contact Import, and the Bulk Import permission checked for your role.

Using the Data Server for bulk contact import
You can use the Bulk Contact Import API to upload contacts in bulk through the Data Server.

Using the Bulk Contact Import API requires the following:

n Webex WFO Administrator role with the Bulk Import permission enabled.

n Read/write access to the Data Server.

To upload contacts in bulk through the Data Server:

PREREQUISITE For a bulk import to successfully upload files using a data server, the data server
must be configured within Webex WFO. This can be a Data Server that is already being used for any
other purpose or a new Data Server. If you are configuring a new Data Server for bulk import, see the

topic, “Data Server Configuration” in the Webex WFO User Guide.

1. To use a data server that is already configured in Webex WFO navigate to the Data Server

Configuration page (Application Management > System Configuration > Data Server

Configuration) and select that data server.

2. In the Regional Data Server ACD Sync Settings section, ensure that Enable Capture is

selected and that the Generic (Default) ACD is assigned.

3. Click Save.

4. Create a CSV (not JSON) file that contains all required fields, plus any optional ones that you want to
add.

51

GIS API | Import post-call survey IVR data

5. Prefix the file with the word CONTACT. The word is case-sensitive, and you must type it in upper-
case.

EXAMPLE

Your CSV file is named ExampleContacts.csv. You must rename it with the CONTACT
prefix as follows:

CONTACT.ExampleContacts.csv

6. Place the CSV file and all associated media files in the GIS <tenant> folder on the Data Server. This
folder is in the location defined by the Regional Data Server GIS File Location field on the Data
Server Configuration page.

EXAMPLE C:\Program Files\Common Files\Webex WFO\Data Server\gis\<tenant>

Import post-call survey IVR data
Data that is collected from post-call surveys via an IVR can be imported into Webex WFO using a generic
IVR integration that uses CSV files saved to a specific folder on the Data Server. See “Add Post-Call

Surveys to Contacts” in the Webex WFO User Guide for more information about configuration.

NOTE This folder location is configured in Webex WFO on the Data Server Configuration page
(Application Management > Global > System Configuration > Data Server Configuration) in the
Regional Data Server GIS File Location field.

The File Observer service triggers the import of these data files into the database and attaches the data to
contact recordings using the Contact ID, Associated Contact ID, or the ICM Call ID.

Two CSV files are required:

n The Form CSV file contains the survey questions and must be processed first.

n The actual survey results are imported through the Results CSV file.

Form CSV file

The Form file name must follow the format Form_<Form ID>.csv, where <Form ID> is a number.

The Form CSV file is formatted to contain the following information:

<form name>,<form status>,<form date>,<total score>

1,DIGITS,"Contact Identifier",0

<question number>,<question type>,<question text>,<question response and weight>

52

GIS API | Import post-call survey IVR data

The first row in the Form CSV file contains the following information:

Field Description

form name The name of the survey form.

form status The form’s status can be editable or active. Editable forms can be
modified with another import. With editable forms existing result data is
deleted before updating the form details. Active forms cannot be changed.

form date The form’s date, in yyyy-mm-dd format.

total score The total score possible in the survey.

The second row in the Form CSV file is required to have question ID 1 and is always the first question in
any VR survey form. It is a placeholder for the contact identifier that is supplied in IVR survey results files

(see Results CSV file):

1,DIGITS,"Contact Identifier",0

The third and all subsequent rows in the file contain the survey questions:

Field Description

question number The number assigned to the survey question.

IMPORTANT Question number cannot be 1.

question type The type of question.

NOTE Only OPTION type questions (an answer on a scale, for

example from 1 to 5) can have results saved and a survey must

have at least one OPTION type question to be associated with a

contact.

question text The survey question.

question responses and
weights

The question response and weight is a comma-separated array in the
format <option id> - <text for result> - <value/weight>.

Where

n <option id> is an ID for the option that is unique in the scope of

53

GIS API | Import post-call survey IVR data

Field Description

the question.

n <text for result> is the text used to identify this option in a survey
result line.

n <value/weight> is the value of the question option.

Results CSV file
Each Results file is an output snapshot from the generic IVR system. For example, the IVR can be
configured to export one file every 30 minutes and include all surveys taken within the last 30-minute
interval. If a form has two questions, then each survey response file will have three lines per survey:

n Line 1 identifies the contact ID to associate with the survey answers.

n Lines 2–3 contain the survey answers for each question.

The Results file name must follow the format Results_<yyyyMMdd>_<HHMM>_<unique ID>.csv
where <unique ID> is a value that makes sure that the file name is unique. It can be based on timestamp,
agent ID, or a generic sequential increment.

The following is the format of each row in the Results CSV file:

<unique identifier>,<form ID>,<survey total earned score>,<question

number>,<answer text>,<answer score/weight>

The first row of each survey result has the following additional syntax requirements:

<unique identifier>,<form ID>,<survey total earned score>,1,<contact ID or

associated contact ID>,0

n The 1 indicates the first row has question number 1 (as is required).

n The <contact ID or associated contact ID> is the identifier for the contact.

n The 0 is a placeholder for the score/weight of this question.

The following table describes what each column in the file contains for each line.

Field Description

unique identifier An identifier matching the unique identifier in the Results file name.

form ID The form ID used in the Form file name.

54

GIS API | Import post-call survey IVR data

Field Description

survey total earned score The total score for the survey.

contact ID or associated
contact ID

The identifier of the contact this survey applies to.

NOTE The identifier that is used in the Results file is determined
by the survey identifier selected on the Post Call Survey page in
Webex WFO (Application Management > QM > QM Contact
Flows > Post Call Survey).

question number The question number matching the question number from the Form file.

answer text The answer text matching one of the <text for result> option values for
the question in the Form file.

answer score/weight The score earned by the answer matching the <value/weight> for one of
the option values for the question in the Form file.

A question is only included in the imported results if all of the following are true:

n The form ID matches the form ID of an imported form.

n The question number matches the question number on that imported form.

n The answer text and the answer score/weight match the text for result and value/weight for an answer
option on that question.

Example
The following are examples of Form and Results CSV files for a scenario where a post-call survey consists

of five questions. A customer answers the survey after a contact identified with the contact ID 987654321.

The customer enters the following answers to the survey:

Question 301 3

Question 302 2

Question 303 3

Question 304 4

Question 305 4

55

GIS API | Import generic CDR data

The Form and Results file for this survey are as follows.

Form File Name: Form_3.csv

1 Customer_Satisfaction_Survey,editable,2019-10-17,200
2 1,DIGITS,"Contact Identifier",0
3 301, OPTION,Were you happy with wait time,1 - strongly disagree - 00,2 - disagree -

10,3 - neither - 20,4 - agree - 30,5 - strongly agree - 40
4 302,OPTION,How was service,1 - strongly disagree - 00,2 - disagree - 20,3 - neither

- 10,4 - agree - 30,5 - strongly agree - 40
5 303,OPTION,Did we resolve issue,1 - strongly disagree - 00,2 - disagree - 20,3 -

neither - 10,4 - agree - 30,5 - strongly agree - 40
6 304,OPTION, Was agent knowledgeable - strongly disagree - 00,2 - disagree - 10,3 -

neither - 20,4 - agree - 30,5 - strongly agree - 40
7 305,OPTION,How satisfied with general services,1 - strongly disagree - 00,2 -

disagree - 10,3 - neither - 20,4 - agree - 30,5 - strongly agree - 40

Results File Name: Results_20191017_1309_1571310547.csv

1 1571310547,3,110,1,987654321,0
2 1571310547,3,110,301,neither,20
3 1571310547,3,110,302,disagree,20
4 1571310547,3,110,303,neither,10
5 1571310547,3,110,304,agree,30
6 1571310547,3,110,305,agree,30

Import generic CDR data
Generic contact detail records (CDRs) from ACDs that are not natively integrated with Webex WFO can be
imported into Webex WFO. This process reconciles these dialer contacts (associates the root calls with
agents and screen recordings) so that the Webex WFO search and play functionality works correctly.

NOTE The reconciliation window is the last 8 hours. This process does not reach any further back
than that to reconcile calls.

Upload via the Gathering Server
To use this option, you must first create a Generic ACD and associate it with a Data Server via the Webex
WFO Data Server Configuration page (Application Management > Global > System Configuration > Data
Server Configuration).

Uploading generic CDR files follows the same process used for uploading other CDR files.

In order for the Data Server to process these requests, the following key must be set to True in the
pluginsConfigured.properties file:

56

GIS API | Import generic CDR data

com.calabrio.wfoserver.datagathering.recon.GenericCdrDataCollector=tr

ue

The properties file is located here:

C:\Program Files\Common Files\Calabrio ONE\Data

Server\config\pluginsConfigured.properties

CSV files are dropped in the base reconciliation cache directory in the GENERIC_CDR_source folder. In a
default installation, this folder is located here:

C:\reconciliationCache\<tenant ID>\GENERIC_CDR_source

After the file is processed, the file contents are added to the date-based file in the GENERIC_CDR_backup
directory. If there is a failure with upload, the content is requeued in the GENERIC_CDR_retry folder.

CSV data definition

The customer provides CSV files that conform to the data definition detailed here.

IMPORTANT The CSV file must not include a header.

1 CallId,CallIdType,AgentId,AgentExtension,CallingNumber,CalledNumber,StartTime,End
Time,IsInbound

Field Description Format Comments

CallId Required.

Call identifier from

the source

provider.

string, 128 char

max

For reconciliation to work, this

must match the universal ID for

the associated root recording.

CallIdType Required.

Call identifier type.

static string:

“GENERIC_ID”

64 char max

AgentId Required.

Agent identifier.

string, 250 char

max

Accepted identifiers:

n AD login with domain:
example

57

GIS API | Import generic CDR data

Field Description Format Comments

mydomain\user.name

n Email : example
user.name@example.com

n Calabrio database ID:
example 42

AgentExtension Not required.

Agent extension.

string, 64 char

max

CallingNumber Not required.

Calling number.

string, 64 char

max

CalledNumber Not required.

Called number.

string, 64 char

max

StartTime Required.

Call start time in

UTC.

yyyy-MM-

ddTHH:mm:ssZ

EndTime Required.

Call end time in

UTC.

yyyy-MM-

ddTHH:mm:ssZ

or OPEN

The “OPEN” value is for transfer
scenarios where the CDR cannot
provide a valid end time for the
transferred leg. When the
transferred leg is reconciled, the
end time for the leg will match the
end time of the root recording. The
agent for the transferred leg will be
the first agent to receive the
transfer, regardless of how many
additional transfers occur.

IsInbound Not required. Boolean string:

58

GIS API | Import and sync file-based data

Field Description Format Comments

Call is inbound. true/false/not

provided will be

null

Example CDR with defined end time

1 123a-456b-789c,GENERIC_ID,ad\userA.nameA,1234,18005551234,5554443333,2021-05-
07T19:57:3200Z,2021-05-07T20:07:00Z,true

Example CDR with open end time

1 321a-456b-789c,GENERIC_ID,ad\userB.nameB,1235,18005551235,5554443333,2021-05-
07T20:07:00Z,OPEN,true

Import and sync file-based data
You can import and synchronize user, team, and service queue data using GIS functionality to add and
update this data.

NOTE You cannot delete data using files. That function remains a manual process.

The files are placed in the location configured in Webex WFO Application Management on the Data Server
Configuration page in the Regional Data Server GIS File Location section. The Data Server will import files
from this location. Once the files are processed by the sync process, the files are archived both on the Data
Server and in the cloud.

Good files are archived under the ~/gis/archives<date> folder on the Data Server. They are kept for 1 week.
Bad files are not uploaded. They are moved to the ~/gis/penaltyBox/<date> folder on the Data Server, and no
further attempts are made to upload them.

Users file
User information is contained in a file called Users.csv. When the file is imported:

n Users are created if they do not exist in the Data Server, and roles are assigned.

n If users already exist, the user names and teams are updated, roles are assigned if not already
assigned.

59

GIS API | Import and sync file-based data

NOTE Do not reactivate users that have been deactivated. This is to allow you to manually
deactivate a team without deactivating users in the ACD.

n Users are assigned to the default team if the team colum is missing or if no team is specified for the
user.

n Users must have at least one valid role assigned to them. If a role specified in the file does not exist
in Webex WFO, then it is skipped without error.

The details of this file are as follows. Fields in the CSV file can be in any order from left to right.

Field Required? Type Description

acdId Yes String The user’s identifier in the ACD.

acdServerId Yes Number Identifier of the ACD. This is the number
of the ACD shown on the
ACD Configuration page.

displayTimeZone No String The time zone the user’s schedules are to
be displayed in, in Olson Timezone
format. If none is provided, the tenant’s
timezone is used.

employeeId No String The user’s employee ID.

enableScheduling Yes Boolean True or False. Enables the user to be
scheduled.

firstName Yes String The user’s first name.

lastName Yes String The user’s last name.

roles Yes String The roles assigned to the user. Multiple
roles are delimited by semicolons. The
roles listed must exist.

teamAcdId No String The ACD ID of the team associated with
the user.

username No String The user’s Webex WFO user name.

windowsLogin No String The user’s Windows login, if Active
Directory is used.

60

GIS API | Import and sync file-based data

File example

1 acdServerId,acdId,employeeId,firstName,lastName,roles,teamAcdId,username,windowsLo
gin,displayTimeZone,enableScheduling

2 1,1001,123,Larry,Jones,Agent;Supervisor,9001,larry.jones@t.com,larry.jones,America
/Chicago,true

3 1,1002,456,Bob,Henderson,Agent,9001,bob.henderson@t.com,bob.henderson,America/Chic
ago,true

4 1,1003,789,Sara,Williams,Agent,9002,sara.williams@t.com,sara.williams,America/Chic
ago,true

Teams file
Team information is contained in a file called Teams.csv. When the file is imported:

n Teams are created if they do not exist in the Data Server.

n If teams already exist, the team names are updated.

n Teams that were synchronized before but do not exist in the current upload file are deactivated.

n Do not reactivate a team that has been deactivated. This is to allow you to manually deactivate the
team without deactivating it in the ACD.

The details of this file are as follows. Fields in the CSV file can be in any order from left to right.

Field Required? Type Description

acdId Yes String The team’s identifier in the ACD.

acdServerId Yes Number Identifier of the ACD. This is the number
of the ACD shown on the
ACD Configuration page.

name Yes String The team’s name.

File example

1 acdServerId,acdId,name
2 1,9001,Sales
3 1,9002,Support
4 1,9003,Customer Relations

Service queues file
Service queue information is contained in a file called ServiceQueues.csv. When the file is imported:

61

GIS API | Import and sync file-based data

n Service queues are created if they do not exist in the Data Server.

n Skill mappings are created for the service queues.

n If service queues already exist, the service queue names are updated.

The details of this file are as follows. Fields in the CSV file can be in any order from left to right.

Field Required? Type Description

acdId Yes String The service queue’s identifier in the
ACD.

acdServerId Yes Number Identifier of the ACD. This is the number
of the ACD shown on the
ACD Configuration page.

name Yes String The team’s name.

File example

1 acdServerId,acdId,name1,800
2 1,skill1
3 1,8002,skill2
4 1,8003,skill3

62

WFM Historical Import Tool (WHIT)
The WFM Historical Import Tool (WHIT) is not included with your Webex WFO installation. You must
request the components from Support and install them according to the instructions in this section.

NOTE File paths shown here are the default file paths.

Software Requirements
The software requirements for running the WHIT tool are as follows:

n The Data Server must be installed and running.

n Java 8 or later must be installed on the Data Server.

WHIT Components
WHIT consists of the following components:

n WFM Historical Import Template spreadsheet

n WHIT JAR file (wfm-historical-import-tool.jar)

n WHIT BAT file (WHIT.bat)

WFM Historical Import Template
The WFM Historical Import Template is an Excel spreadsheet named WFM_Historical_Import_
Template.xls. Your historical data is entered in this spreadsheet and then saved in CSV (comma separated
value) format.

WHIT JAR and BAT Files
The WHIT BAT file starts the Historical Import Tool, which then is used to convert your historical data from
the CSV file you create from the Historical Import Template to a set of files in the format expected by the
Generic Interface Services (GIS) API, a feature that comes with WFM. The GIS API, in turn, imports the
files into the Webex WFO database.

63

WFM Historical Import Tool (WHIT) | Importing Data with WHIT

Importing Data with WHIT
The process of importing data consists of the following tasks:

1. Install WHIT.

2. Insert your data into the WHIT spreadsheet and save it in CSV format.

3. Run WHIT.bat.

Installing WHIT

Install WHIT on your Data Server

1. Log in to the Data Server.

2. Copy WHIT.bat, wfm-historical-import-tool.jar, and WFM_Historical_Import_
Template.xls to any folder on the Data Server.

Preparing the WHIT Spreadsheet
The fields that you complete in the WFM Historical Import Template spreadsheet depend on the type of
service queue for which you are importing data.

There are two service queue types:

n Interactive: Interactive service queue types consist of contacts in which agents and customers have
real-time communication, such as voice (call) or chat.

n Non-Interactive: Non-interactive service queue types consist of contacts in which agents and
customers do not have real-time communication, such as email, fax, and social media, as well as
contact activities like stuffing envelopes.

The field names can be interpreted differently for each service queue type. For example, ReceivedCalls can
be thought of as the number of chat contacts received or the number of email contacts received. Complete
the spreadsheet in a manner that works best for your contact center.

Prepare the WHIT spreadsheet

1. Open the WFM_Historical_Import_Template.xls spreadsheet.

2. Insert your historical data into the spreadsheet. A description of what goes in each field is included in
the spreadsheet.

64

WFM Historical Import Tool (WHIT) | Importing Data with WHIT

To import historical data for interactive service queues, complete the required fields in red. You can
also complete optional fields in green if desired.

To import historical data for non-interactive service queues, complete the required fields in red. Also

complete the ServiceLevel, QtyOfAgents, and OccupancyRatio fields.

NOTE Be aware that sometimes spreadsheets convert date formats to something other than
what you enter. Dates must be in the format YYYY-MM-DD to be imported correctly.

Set the values in required fields to 0 (zero) for data you do not want to specify.

NOTE If those fields are optional, you can remove those columns.

3. When you have added all your historical data, save the spreadsheet in comma separated value (CSV)
format.

4. Copy the CSV file to the same location on the Data Server where you copied the WHIT JAR and
BAT files

Running WHIT
Perform this task on the Data Server.

Run WHIT

1. Double-click WHIT.bat to start the import tool.

2. Follow the instructions in the tool:

a. Click Next and complete the check list on the second screen. You cannot proceed until you
have checked off each item.

b. Click Next and complete the fields on the third screen.

3. Click Import. WHIT generates GIS files from your data and places them in the following location:

C:\Program Files\Common Files\Webex WFO\Data Server\gis\<tenant name>

NOTE This is the default location.

4. The GIS API then processes the GIS files and imports the data into the Webex WFO database. After
the GIS files are processed, the GIS API removes the files from the gis folder and archives them
under the ~/gis/archives<date> folder on the Data Server, and WHIT displays the following message:

All files are captured. Historical import is complete.

65

WFM Historical Import Tool (WHIT) | Importing Data with WHIT

The imported data can be viewed in Webex WFO on the Application Management > View and Edit
Historical Data page.

66

	Contents
	Introduction
	GIS API
	Capture historical data
	Requirements
	File Usage
	Text File Locations
	ACD Numbering
	Text File Details
	Data Type Definitions
	AgentProductivity.AGENT File
	ServiceHistorical.SERVICE File
	AgentState.EVENT File

	Integrate your HRMS with Webex WFO
	Import file details
	Export file details

	Real-time data capture API
	API Definition

	Import contacts in bulk
	Protocol and URI
	Supported formats
	Request and response fields
	CSV file examples
	JSON file examples
	ZIP format
	Using the Data Server for bulk contact import

	Import post-call survey IVR data
	Form CSV file
	Results CSV file
	Example

	Import generic CDR data
	Upload via the Gathering Server

	Import and sync file-based data
	Users file
	Teams file
	Service queues file

	WFM Historical Import Tool (WHIT)
	Software Requirements
	WHIT Components
	WFM Historical Import Template
	WHIT JAR and BAT Files

	Importing Data with WHIT
	Installing WHIT
	Preparing the WHIT Spreadsheet
	Running WHIT

